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A b s t r a c t

MicroRNAs are small non-coding post-translational biomolecules which, 
when expressed, modify their target genes. It is estimated that microRNAs 
regulate production of approximately 60% of all human proteins and en-
zymes that are responsible for major physiological processes. In cardiovascu-
lar disease pathophysiology, there are several cells that produce microRNAs, 
including endothelial cells, vascular smooth muscle cells, macrophages, plate-
lets, and cardiomyocytes. There is a constant crosstalk between microRNAs 
derived from various cell sources. Atherosclerosis initiation and progression 
are driven by many pro-inflammatory and pro-thrombotic microRNAs. Ath-
erosclerotic plaque rupture is the leading cause of cardiovascular death re-
sulting from acute coronary syndrome (ACS) and leads to cardiac remodeling 
and fibrosis following ACS. MicroRNAs are powerful modulators of plaque 
progression and transformation into a vulnerable state, which can eventually 
lead to plaque rupture. There is a growing body of evidence which demon-
strates that following ACS, microRNAs might inhibit fibroblast proliferation 
and scarring, as well as harmful apoptosis of cardiomyocytes, and stimulate 
fibroblast reprogramming into induced cardiac progenitor cells. In this review, 
we focus on the role of cardiomyocyte-derived and cardiac fibroblast-derived 
microRNAs that are involved in the regulation of genes associated with car-
diomyocyte and fibroblast function and in atherosclerosis-related cardiac 
ischemia. Understanding their mechanisms may lead to the development of 
microRNA cocktails that can potentially be used in regenerative cardiology. 

Key words: acute coronary syndrome, atherosclerosis, cardiac ischemia, 
cardiac regeneration, cardiomyocytes, fibroblasts, induced cardiomyocytes, 
microRNAs. 

Definition of microRNAs, biogenesis and rationale for their use

MicroRNAs are small non-coding post-translational biomolecules 
which, when expressed, modify their target genes [1–3]. It is estimat-
ed that microRNAs regulate production of approximately 60% of all hu-
man proteins and enzymes that are responsible for major physiological 
processes [1, 2]. MicroRNAs are produced by a variety of cells [1–4]. In 
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cardiovascular disease pathophysiology, there are 
several cell lineages that produce microRNAs, in-
cluding endothelial cells (ECs), vascular smooth 
muscle cells (VSMCs), macrophages, platelets, 
fibroblasts, and cardiomyocytes [3–5]. There is 
a constant crosstalk between microRNAs derived 
from various cell sources. 

MicroRNAs regulate gene expression at the 
post-transcriptional level by binding to 3′- or less 
often to 5′-untranslated regions of target messen-
ger RNAs (mRNAs), which in consequence leads to 
inhibited translation and/or induces degradation 
of targeted mRNA [1]. Through this mechanism, 
a single microRNA can alter the function of mul-
tiple mRNAs. Furthermore, circulating microRNAs 
in the serum are resistant to lysis and are stable 
against RNase, as they are hidden in microparti-
cles, apoptotic bodies, etc. [1].

MicroRNA biogenesis is quite complex [2]. The 
primary microRNA (Pri-miRNA) is produced in the 
cell nucleus through the transcription of a  DNA 
strand mediated by RNA polymerase II [2]. After 
transcription, Pri-miRNA is cleaved by the enzy-
matic complex DROSHA into a  micro-RNA pre-
cursor (pre-miRNA). Pre-miRNA is exported to the 
cytoplasm by exportin-5 and cleaved by Dicer (an 
RNA degrading enzyme) and produces approxi-
mately 22 nucleotide RNA duplexes. A microRNA 
strand is transferred to the Argonaute complex 
(AGO), forming an RNA-induced silencing complex 
(RISC), and guides it to pair with the target mRNA 
through binding of the microRNA seed sequence 
with the microRNA recognition site on the mRNA. 
MicroRNAs are secreted out of cells via exosomes 
[2]. Presently, more than 2000 human microRNAs 
have been identified (www.mirbase.org), and 
some of them are involved in atherosclerotic pro-
cesses [4, 5]. 

Atherosclerosis initiation and progression 
are driven by multiple pro-inflammatory and 
pro-thrombotic microRNAs that overcome micro
RNAs with protective functions against athero-
sclerosis [4–6]. Atherosclerotic plaque rupture is 
the leading cause of cardiovascular death result-
ing from acute coronary syndromes (ACS), both in 
ST-segment (STEMI) and non-ST segment eleva-
tion (NSTEMI) myocardial infarction, as well as car-
diac remodeling and fibrosis following ACS [4–6]. 

In this review, we focus on the role of cardio-
myocyte-derived and fibroblast-derived micro
RNAs that are involved in the regulation of genes 
associated with cardiomyocyte function and ath-
erosclerosis-related cardiac ischemia. Furthermore, 
we discuss microRNAs which can be potentially 
used in regenerative cardiology. To understand the 
regulatory functions of cardiomyocyte-derived mi-
croRNAs, it is essential to discuss the structure of 
cardiac cells which comprise the heart.

The cardiac muscle

The cardiac muscle is a  very complex organ; 
however, for the purpose of this review we will 
simplify our discussion regarding the structure 
and function of cardiomyocytes and fibroblasts in 
the human heart. The human heart is composed 
of region-specific cardiomyocytes (atrial or ven-
tricular), ECs, VSMCs, fibroblasts which produce 
extracellular matrix, and blood vessels [7, 8]. The 
cardiomyocyte (cardiac muscle cell) is the funda-
mental unit responsible for heart contractility [7, 
8]. Cardiomyocytes are involved in the contractile 
function of the heart with constant contraction 
and relaxation during the cardiac cycle through-
out an individual’s entire life span [7, 8]. Each 
human cardiomyocyte contains both contractile 
proteins, usually 1 or 2 nuclei, and large numbers 
of mitochondria which provide adequate levels of 
ATP required by the cells (Figure 1). The basement 
membrane of cardiomyocytes is composed of gly-
coproteins (laminin and fibronectin), type IV colla-
gen, as well as proteoglycans [9]. This membrane 
is responsible for trapping calcium ions responsi-
ble for contractility and those that permit the me-
chanical and electrical coupling of adjacent cells. 

Sarcomeres, the essential elements of cardio-
myocytes, are composed of contractile proteins 
such as actin and myosin, and cytoskeletal pro-
teins which maintain mechanical integrity of the 
cell [7, 8, 10]. Sarcomeres also contain the regu-
latory proteins troponin and tropomyosin. Car-
diac troponins (cTn) I  and C control the binding 
of myosin to actin and consequently take part in 
the contraction and relaxation of cardiac muscles 
(Figure 1). Myosin and actin generate the force of 
contraction, while thin filament proteins calibrate 
the force generated by contractile proteins. Also, 
titin, a myofilament protein, functions as a scaf-
fold for sarcomeric assembly and as a molecular 
spring in striated muscle cells to regulate both 
systolic and diastolic function [11]. Titin molecules 
anchor to the Z-disc and M-line of the sarcomere. 
Alterations in titin isoform expression and titin 
proteolysis contribute to contractile dysfunction 
in dilated cardiomyopathy, ischemic heart injury, 
and COVID mRNA vaccination [12].

There are differences in the composition of my-
osin heavy chains and in fiber arrangement be-
tween atrial and ventricular regions. The β isoform 
of myosin heavy chain (MHC-β) is predominant in 
the adult ventricles, while the α isoform (MHC-α) 
is predominant in the atria [8]. In addition, there 
is a difference in myosin light chain isoforms be-
tween the atria and ventricles [10]. All cardiomy-
ocytes comprise the fibers of the cardiac muscle, 
which communicate through gap junctions. The 
adjacent cells are anchored together by desmo-
somes. 
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In the heart, cardiomyocytes co-exist with fibro-
blasts. Following cardiac injury, such as in myocar-
dial infarction (MI), fibroblasts become activated 
and can transform into myofibroblasts, cells which 
exhibit the behavior of both a  fibroblast (gener-
ating extracellular matrix) and a  smooth muscle 
cell (ability to contract). Alternatively, they may 
proliferate as fibroblasts, contributing to scarring 
within the post-MI area.

The natural ability of cardiac muscle cells to 
regenerate is minimal. Studies have shown that 
approximately 1% of cardiac cells are renewed in 
young adults annually. However, this decreases to 
about 0.3–0.45% for individuals above 75 years 
of age [13]. Following cardiac injury there is an 
irreversible loss of cardiomyocytes and intense 
replacement of the cardiomyocyte space by exces-
sive fibroblastic proliferation, which leads to scar-
ring and post-MI acute and chronic complications. 

Despite the progress which has been made in 
regenerative therapy in cardiology, such as stimula-
tion of human pluripotent stem cell-derived cardio-
myocytes or human embryonic stem cells, there is 
still room for further development of novel technol-
ogies in the prevention of adverse cardiac outcomes 
[10]. One possible direction is the employment of 
microRNAs that naturally regulate all physiological 
and pathophysiological processes in the heart [14]. 

MicroRNAs and heart development

MicroRNAs regulate all stages of embryon-
ic cardiac development and heart functions 
throughout an individual’s life [15]. This process 
is highly conserved in mammals [16]. The heart 
is the first organ which starts to develop, usu-
ally in the third week of gestation [16]. Micro
RNAs appear during heart development at differ-
ent stages and have diverse functions (Table I). 
During heart development, cardiomyocyte struc-
ture and proliferation are regulated by 2 critical 
microRNAs: miR-1 and miR-133 [17]. Their ac-
tivity must be well balanced, as either over-ex-
pression or under-expression is associated with 
defects [18]. Studies suggest that miR-1 may 
regulate sarcomere formation in the mammali-
an heart [19]. A study involving a miR-133a dou-
ble-knockout embryonic heart showed increased 
cardiomyocyte proliferation as well as apoptosis, 
disrupted sarcomere structure, and dysregulat-
ed expression of smooth muscle genes [20]. In 
the early stages of heart development, miR-128a 
stimulates the differentiation of cardiomyo-
cyte progenitor cells into various subtypes of 
cardiomyocytes by modulating the differentia-
tion of cardiac progenitor cell populations [21]. 
A cluster of miR-17-92 promotes cardiomyocyte 
proliferation in embryonic, postnatal, and adult 

Figure 1. A basic schematic diagram of human left ventricular muscle structure and cardiac muscle-derived micro
RNAs. A – A sarcomere is composed of myofibrils, each containing myofilaments: the thick filaments are composed 
of myosin, while the thin filaments are composed of actin, tropomyosin, troponin C, and troponin I. Myosin con-
tains two heads having ATPase activity. Calcium ions (Ca2+) bind via troponin C. miR-208b and miR-499 regulate 
genes for myosin heavy chains. B – Cardiac muscle cells are striated, branched, involuntary, and usually contain 
a single nucleus. C – Fibroblasts provide support to cardiac muscle cells, as they are responsible for deposition of 
extracellular matrix in the heart
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Table I. MicroRNAs involved in heart development (data from mouse studies, or human induced pluripotent stem 
cells) and their function

MicroRNAs involved in 
heart development

Subject  
of study

Activity/significance Reference

miR-1 Mice Promotes differentiation of embryonic stem cells into 
cardiomyocytes, regulates sarcomere formation in the 

mammalian heart, cardiomyocyte structure, proliferation, and 
cardiac conduction 

[18, 19]

miR-133a Mice Inhibits differentiation of embryonic stem cells into 
cardiomyocytes, regulates sarcomere structure, cardiomyocyte 

proliferation and apoptosis, expression of smooth muscle genes

[20]

miR-128a hiPSCs Subtypes of cardiomyocytes, modulates differentiation of 
cardiac progenitor cell populations

[21]

A cluster of miR-17-92 Mice Promotes cardiomyocyte proliferation in embryonic, postnatal, 
and adult hearts 

[22, 23]

miR-15 
miR-16

Mice Decreases cardiomyocyte proliferation and induces apoptosis [24]

miR-499 Mice Production of myosin heavy chains, ventricular specification [25, 26] 

miR-208b Mice Production of myosin heavy chains  [27]

miR-145 Mice Differentiation of multipotent cardiac neural crest stem cells 
into VSMCs 

[15] 

miR-21 
miR-31 
miR-103/107
miR-155
miR-200 

Mice Implicated in epicardial development  [15]

miR-218 Zebrafish May control cardiac cell migration [28]

miR-143/145 Mice May be responsible for cell-cell contact [29, 30]

hiPSCs – human induced pluripotent stem cells, VSMCs – vascular smooth muscle cells.

hearts, whereas members of the miR-15 family 
decrease cardiomyocyte proliferation and induce 
apoptosis [22–24]. Several microRNAs regulate 
the expression of cardiac myosin genes, includ-
ing miR-208b (the most important) and miR-499 
(dependent), which are involved in the regulation 
of genes responsible for producing myosin heavy 
chains [25]. Additionally, one study found that 
miR-499 was an important regulator of ventric-
ular specification [26]. Expression of these mi-
croRNAs is also crucial in postnatal life; however, 
high expression levels of miR-208b do not lead to 
cardiomyocyte proliferation, but rather to cardio-
myocyte hypertrophy, atrial fibrillation, and heart 
failure [27]. 

It is possible that miR-218 may control cardiac 
cell migration, whereas miR-143 (well-known for 
VSMC switching) may be responsible for cell-cell 
contact; however, this has not yet been confirmed 
in mammals [28]. In the early stages of murine 
cardiogenesis, miR-143 and miR-145 are high-
ly expressed and are transcribed as a  bicistron-
ic cluster [29, 30]. MicroRNAs, such as miR-145, 
are involved in the differentiation of multipotent 
cardiac neural crest stem cells into VSMCs during 
heart organogenesis. Moreover, miR-145 is very 
important as it is capable of reprogramming adult 
fibroblasts into VSMCs [31]. MicroRNAs, including 

miR-21, miR-31, miR-103/107, miR-155, and the 
miR-200 family, have been implicated in epicardial 
development [15].

All embryonic microRNAs act through their tar-
get genes, resulting in synthesis of proteins [32–
70]. The microRNAs which appear to play a pivot-
al role in cardiac development include miR-1 (by 
promoting myogenesis and MHC differentiation) 
and miR-133 (by promoting mesoderm formation 
at the early stages of embryological development) 
(Table II) [32–35]. The expression of miR-1 and 
miR-133 in the embryonic heart is regulated by 
transcription factors SRF, MEF2, myogenic regula-
tory factor (MRF), and MyoD [34, 35]. In addition, 
miR-208b together with miR-499 drives muscle 
cell specification and slows MHC upregulation 
through targeting β-MHC and Sox6 genes [36–39]. 

During embryogenesis, the developmental po-
tential of cells is gradually restricted as they be-
come modified toward a specific function. As cell 
development continues, its function is determined 
by DNA methylation and chromatin remodeling, 
which is mostly regulated by transcription fac-
tors [40–44]. Cardiomyocytes being derived from 
pre-cardiac mesoderm are modulated by tran-
scription factor MESP1 as well as other depen-
dent factors, including GATA4, MEF2C, SRF, or ISL1 
[40–44]. Different microRNAs target their specific 
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Table II. Target genes associated with cardiomyocyte-derived microRNAs

microRNA Target gene Activity/significance Reference

miR-1 HDAC4, MEF2C – �Promote mesoderm formation and suppress non-muscle   gene 
expression in ESC

– �Strongly enhance myogenesis by increase in expression of 
myogenin and MHCs, MyoD, MEF2 and skeletal α-actin

[19, 32]

miR-133a SRF – �Promotes mesoderm formation and suppresses non-muscle 
gene expression in ESC

– �Enhances myoblast proliferation by repressing SRF

[20, 32, 34] 

miR-128a Isl1, Sfrp5, 
Hcn4, Irx4

– �Postnatal heart growth by modulating cardiomyocyte 
proliferation during early cardiogenesis

– �Upregulating the transcription factors of cardiac progenitor 
cells

– Marking ventricular progenitors

[21, 57, 58, 
59] 

cluster of miR-
17-92

PTEN, CDK1 Regulation of cardiomyocyte proliferation in embryonic, 
postnatal, and adult hearts

[23, 60, 61]

miR-15 
miR-16

C/EBPβ, IGF1 Protection/downregulation of cardiac hypertrophy [54]

miR-208b β-MHC, Sox6, 
Purβ, Sp3, HP1β

– �Dominant role in the specification of muscle fiber identity by 
activating slow and repressing fast myofiber gene programs

– Upregulation of slow MHCs in adult heart

[25] 
[37]

miR-499 Sox6, cyclin D1 Inhibition of cell proliferation and promotion of cell apoptosis in 
P19CL6 cells and cardiomyocytes

[38]
[39]

miR-133b PTBP1, TAGLN2 Alleviates apoptosis and cardiac fibrosis, modulates collagen 
deposition

[53]

miR-143/145 HK2 Addresses G6PD, PPP pathways and p62. Activation of these 
signaling pathways induces a reductive redox shift, resulting in 
cardiomyopathy

[55]

miR-155 NEDD4 Cardioprotective against cardiomyocyte apoptosis; modulates 
myofibroblast density

[56]

miR-218 REST Regulates cardiac differentiation of embryonic stem cells by 
regulating the Wnt/β-catenin signaling pathway and GATA4

[63]

miR-124 STAT3 – �Downregulation of cardiac-specific markers-ANP, TnT, and 
α-MHC proteins;

– �Regulation of myogenic differentiation of BMSCs by targeting 
STAT3 mRNA

[64, 65]

miR-21 Ajuba/Isl1 Differentiation of BMSCs into cardiomyocyte-like cells; 
contributes to formation and maintenance of cell-cell 
connections and supports cell division and migration

[66]

miR-31 CAMK2D, 
YWHAE

Promotes loss of dystrophin and nNOS in human [67]

miR-103/107 PANKs, FADD Modulates mitochondrial concentration; regulates systemic 
glucose metabolism; H2O2-induced necrosis

[68, 69]

miR-200b GATA-4 Transcription factor; regulation of developmental processes of 
the heart, cardiac myocyte proliferation, differentiation and 
survival

[70]

ANP – atrial natriuretic peptide, BMSCs – bone marrow-derived mesenchymal stem cells, CAMK2D – calcium/calmodulin dependent 
protein kinase II delta, CDK1 – cyclin dependent kinase 1, C/EBPβ – CCAAT enhancer binding protein beta, ESCs – embryonic stem 
cells, FADD – Fas-associated via death domain, G6PD – glucose-6-phosphate dehydrogenase, GATA4 – GATA binding protein 4,  
Hcn4 – hyperpolarization activated cyclic nucleotide gated potassium channel 4, HDAC4 – histone deacetylase 4, HK 2 – hexokinase 2, 
HP1β – heterochromatin protein 1β, IGF1 – insulin-like growth factor-1, Irx4 – iroquois homeobox 4, MEF2 – myocyte-specific enhancer 
factor 2, MHC – myosin heavy chains, mRNA – messenger ribonucleic acid, MyoD – myoblast determination protein 1, NEDD4 – neural 
precursor cell expressed developmentally down-regulated protein 4, nNOS – neuronal nitric oxide synthase, PANKs – pantothenate 
kinases, PPP – pentose phosphate pathway, PTBP1 – polypyrimidine tract-binding protein 1, PTEN – phosphatase and tensin homolog, 
Purβ – purine rich element binding protein B, REST – RE1 silencing transcription factor, Sfrp5 – secreted frizzled related protein 5, Sox6 
– SRY-box transcription factor 6, Sp3 – specificity protein 3, SRF – serum response factor, STAT3 – signal transducer and activator of 
transcription 3, TAGLN2 – transgelin 2, TnT – troponin T, YWHAE – tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 
protein epsilon, Wnt – wingless/integrated.
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genes, thus modifying the transcription factors 
and regulating cardiomyocyte development [40]. 
The molecular mechanisms regulating cardiomyo-
cyte proliferation include core cell cycle proteins 
such as cyclins (cyclin D1, D2, B1), cyclin-depen-
dent kinases (CDK1, CDK4), and nuclear proteins 
which regulate the cell cycle, such as Gata4, 
Meis1, and Hand2 [40–44]. In addition, signaling 
pathways including Hippo, Notch, and p38 kinase 
pathways are involved in cardiomyocyte prolifer-
ation [45–51]. Cardiomyocyte proliferation may 
also be stimulated by exogenous factors such as 
hypoxia or inhibited by thyroid hormones [52, 53].

MicroRNAs act through their target genes, and 
in this way are involved in the process of heart 
regeneration. After myocardial damage, the loss 
of cardiomyocytes is mostly irreversible, which re-
sults in scar formation and cardiac remodeling [53, 
71, 72]. In this process, microRNAs can influence 
cardiac hypertrophy [54], especially by modulat-
ing glucose-6-phosphate dehydrogenase or pen-
tose phosphate pathways, by stimulating cardiac 
cell apoptosis and subsequent fibrosis [53], or by 
modifying myofibroblast density [55, 56]. Tracing 
different cell lines and their potential to survive 
and regenerate after myocardial injury is the main 
issue of many current studies, as it can result in 
establishing genes or their target proteins as po-
tential therapeutic points.

The fetal heart is an excellent model for the 
synchronized, often overlapping microRNA activ-
ity during development of the mature heart. To 
understand fibroblastic substitution following 
cardiomyocyte death in cardiac ischemia, it is 
important to elucidate the mechanisms involved 
in embryonic heart maturation. In regenerative 
cardiology, using microRNAs to stimulate fibril 
production in cardiomyocytes, as well as keeping 
cardiomyocytes in situ (homing), is challenging. 
In addition, microRNA-based inhibition of exces-
sive autophagy and apoptosis of cardiomyocytes 
should be well balanced. Finally, stimulation of 
fibroblasts into induced cardiomyocytes (iCMs) re-
quires regulation of microRNAs. 

Acute cardiac ischemia

Diagnostic microRNAs

Cardiomyocyte-derived microRNAs 
diagnostic for ACS

MicroRNAs contained in cardiomyocytes are 
released into the blood stream as a result of car-
diac cell ischemia, leading to cell damage [73–76]. 
Among the cardiomyocyte-enriched microRNAs, 
miR-1, miR-21, miR-133a, miR-133b, miR-145, 
miR-208b, miR-223, and miR-499 are considered 
markers of myocardial damage and have been 
studied in the context of possible diagnostic bio-

markers for ACS [77–80]. These microRNAs are 
detectable in the serum, often before traditional 
markers of cardiac necrosis are detectable (Ta- 
ble III). Thus, microRNAs may be used to differen-
tiate patients with stable angina from vulnerable 
patients. Some microRNAs might be better than 
others as they are characterized by their high di-
agnostic accuracy and rapid release preceding car-
diac troponins (cTn) [76]. Studies showed that the 
diagnostic sensitivity and specificity of miR-499 
was very high (between 98 and 100%) [77, 78].  
In a  study by Abdou et al., diagnostic accuracy 
(AUC) for miR-499 was 0.90 (95% CI: 0.845–0.955) 
with 89% sensitivity and 83% specificity in STEMI 
patients [79]. Furthermore, 74% of patients had 
a significant increase in miR-499 expression lev-
els compared to 65% positive cTn in the first  
3 h of chest pain [79]. A meta-analysis of 14 ob-
servational studies showed that circulating miR-
499 is a  reliable biomarker for diagnosing acute 
myocardial infarction in patients [80]. Additionally, 
upregulation of miR-208a can be easily detected 
in 100% of ACS patients within 4 h of the onset 
of symptoms, whereas it remained undetect-
able in non-ACS patients [81]. A meta-analysis of  
13 studies by Wang et al. involved a  group of  
1703 patients with ACS and a group of 1589 con-
trol patients [82]. They found that miR-208b is 
characterized by a  high diagnostic accuracy for 
ACS (AUC = 0.93 (95% CI: 0.91–0.95), p < 0.001), 
with a pooled sensitivity of 83% and specificity of 
97% [80]. All the microRNAs are placed in close 
proximity to the myosin and actin apparatus; thus, 
their high expression levels are associated with 
a greater loss of myofibrils, leading to an unfavor-
able reduction in left ventricular ejection fraction 
and post-MI remodeling [82–84]. An interesting 
issue is whether microRNAs can be considered 
potential biomarkers of acute coronary artery oc-
clusion in an infarct-related artery (IRA). Occlusion 
of an IRA occurs both in STEMI and NSTEMI-ACSs 
[85]. A recent study by Gacoń et al. showed prom-
ising results for miR-133b and miR-124, as they 
were associated with an increased risk of acute 
coronary artery thrombosis [85]. 

Prognostic microRNAs 

MicroRNAs are prognostic for adverse cardio-
vascular events following ACS.

MicroRNAs associated with acute cardiac isch-
emia are often biomarkers of major cardiac and 
cerebral events following ACS [86–94]. Decreased 
miR-150 and increased serum levels of miR-1, miR-
34a, miR-223, miR-146a, miR-197, and miR-208b 
are associated with increased cardiovascular mor-
tality following ACS, major adverse cardiovascular 
events, heart failure (HF), and left ventricular re-
modeling [86–92] (Table III). In a study by Schulte 
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et al. which included 340 ACS patients, levels of 
miR-197 and miR-223 were predictive for cardio-
vascular death (CVD) [86]. In a study by Hromadka 
et al., adding miR-223-3p into the model for cal-
culating ischemic risk following ACS significantly 
increased the predictive accuracy for CVD (OR = 
10.8, 95% CI: 1.37–85.07, p = 0.024), as well as 
the combined ischemic endpoint (CVD/re-MI/IS) 
within 30 days and 1 year [88]. In a study by Lin 
et al., only the level of miR-150 differed between 
patients who developed HF (HR = 1.233; 95% CI: 
1.125–1.352) from those who did not at a 1-year 
follow-up [90]. Some researchers have suggested 
that inflammation-related microRNAs such as miR-
145, miR-146a, and miR-342 can serve as biomark-
ers of adverse prognosis following ACS [91, 92].

microRNAs modifying platelets’ activity 

Platelet response to dual antiplatelet 
treatment

A  variety of therapeutic strategies were em-
ployed to diminish the risk of adverse cardiac 
events following ACS [95, 96]. The most important 
strategy includes urgent coronary percutaneous 
intervention (PCI) with restoration of IRA paten-
cy, preferably with provisional stenting [95, 96]. 
Undergoing this procedure in a  timely manner 
limits the post-MI infarct size area, scarring, and 
incidence of malignant arrhythmia and episodes 
of HF.

Since PCI with stent implantation requires the 
usage of dual antiplatelet treatment (DAPT) for 
a prolonged period of time, it is associated with an 
increased risk of bleeding, particularly in elderly 
patients who also use anticoagulants for atrial ar-
rhythmia [97]. MicroRNAs associated with platelet 
aggregation could be used as biomarkers of plate-
let response to DAPT treatment (Table III) [98–
100]. Due to the limited value of platelet reactivity 
tests, this may offer a practical approach [75, 98]. 
MicroRNA-driven dosages of antiplatelet agents 
could enable personalization of antiplatelet treat-
ment to prevent episodes of excessive bleeding or 
stent thrombosis [98–100]. High platelet reactivity 
during treatment is associated with decreased ex-
pression levels of circulating miR-233 [99]. In con-
trast, increased expression levels of miR-223 are 
associated with increased DAPT responsiveness 
[101]. In line with these observations, the expres-
sion of miR-21, miR-221, and miR-223 in platelets 
from ACS patients appeared to be decreased in 
non-responders who were receiving aspirin and 
clopidogrel [102]. Because results are not entirely 
consistent throughout the studies, investigations 
on the expression levels of microRNAs (such as 
miR-223 and miR-126) and properties of platelet 
coagulability are still ongoing [102].

MicroRNAs in the prevention of in-stent 
restenosis

The main drawback of stent implantation is 
stent restenosis [103, 104]. Data indicate that 
this complication could be overcome using coated 
stents with microRNA agonists (miR-22) or antag-
onists (anti-miR-21) (Table III) [105–108]. A study 
by Gutierrez-Carretero et al. found that low plas-
ma levels of miR-30b-5p may have diagnostic po-
tential for determining the risk of in-stent reste-
nosis in coronary arteries [109].

Therapeutic approach based on microRNAs 
and their ability to modify target genes

Challenges in microRNA delivery

MicroRNAs target sites in mRNA mostly lie 
within the 3′-UTR and less frequently in 5′-UTRs or 
coding regions [1]. Natural microRNAs are stable 
and resistant to enzymatic lysis because they are 
hidden inside microvesicles and microparticles; 
therefore they are protected from quick enzymatic 
lysis [110, 111]. In contrast, exogenous microRNAs 
must obtain properties that would make them re-
sistant to rapid lysis and increase their cellular 
adhesion, so they could exert their therapeutic 
actions. Clinical studies on micro-RNA-based ther-
apies are feasible because novel technologies of 
microRNA delivery and encapsulation are devel-
oping. To decrease the expression of a  specific 
microRNA, specific antisense oligonucleotides 
(ASOs), small interfering RNA (siRNA), and miRNA 
sponges are utilized [110–113]. ASOs (chemically 
modified) are preferred over natural oligonucle-
otides to reduce nuclease sensitivity and rapid re-
nal clearance, but also to optimize delivery [110–
112]. Genetic knockout and synthetic microRNA 
mimics or pre-miRNA in viral vehicles are used to 
enhance a specific microRNA level. Encapsulation 
includes adenovirus, lentivirus, AAV, microspheres, 
lipid nanoparticles, and liposomes [110–113].

ASOs for anti-miRs (antagomirs) are delivered 
as a  single strand and do not seem to become 
part of the RISC, whereas mimics are usually ap-
plied as double strands to make them a substrate 
for Dicer and promote integration of one strand 
into the RISC. Agomir and antagomir are more 
stable in the blood stream, having a lasting effect 
between 1 and 6 weeks.

Also, various routes of microRNAs administra-
tion are used: subcutaneous injection, intravascu-
lar delivery, direct injection to the coronary circu-
lation or into the heart, and devices coated with 
microRNAs. E.g. microRNA mimics of 4 cardiomyo-
cyte-derived microRNAs are injected directly into 
the heart using nanocomplexes of branched poly-
ethyleneimine-coated nitrogen-enriched carbon 
dots [114]. 
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In the near future, further progress regard-
ing the biomolecule mediated delivery of micro- 
RNAs is likely to be achieved by the development 
of aptamer conjugates [113]. Aptamers are sin-
gle-stranded nucleic acids with high-affinity li-
gands of cellular surface receptors, facilitating 
their intracellular uptake by receptor-mediated 
transport [113]. They may be easily produced by 
standard in vitro synthesis techniques and able to 
be coupled to corresponding microRNA therapeu-
tics by simple sticky-end annealing. Aptamer-con-
jugated microRNA agents, such as the GL21.T-
miR-34c conjugate, are currently being tested in 
preclinical studies for selective targeting of tumor 
cells, including lung cancer cells. 

MicroRNA-based strategies to prevent 
cardiac remodeling after ACS

Inhibition of extensive fibroblast 
proliferation resulting in scar formation

Extensive fibroblast proliferation after ACS 
leads to excessive left ventricle wall scarring that 
aggravates post-MI cardiac remodeling. micro
RNAs involved in the pathogenesis of post-MI left 
ventricular remodeling and HF are mostly fibro-
blast-derived [115]. Cardiac fibrosis is an interplay 
between pro-fibrotic microRNAs (miR-9, -15, -21, 
-26a, -34a, -92, -125b, 132, -155, 199b, -208a, 
-223, -433, and let-7c) and anti-fibrotic microRNAs 
(miR-7a/b, -19a, -19b, -22, -24, -29a, -29b, -30a-5p, 
-99, -101, -133a, -144, 146, -150, -210, -214, -370, 
and miR-384) [115]. Currently, microRNA-based 
strategies to prevent adverse outcomes following 
ACS are being investigated, focusing mainly on 
the inhibition of pro-fibrotic microRNAs. micro
RNA antagomirs, at least in theory, should lead to 
the salvage of cardiac function through decreased 
fibroblast proliferation

Ongoing and terminated studies involving 
microRNA-based treatment in ACS patients

Before a  micro-RNA-based treatment can be 
commenced, a microRNA has to come a long way, 
from bench genetic studies, cell cultures, animal 
models (mouse, pig, monkey) into first-in-human 
studies [110–113]. In the cardiovascular setting, 
a good example of a microRNA that makes a fast 
tract career is miR-132-3p. Antagomir against 
miR-132-3p (known as CDR132L) prevented post-
MI cardiac remodeling, which was confirmed in 
mouse models of HF, and later confirmed in pig 
models with ACS [110, 116, 117]. A phase I clinical 
trial in humans revealed good tolerability and evi-
dence of a therapeutic benefit, such as preserved 
cardiac function and reversed cardiac remodel-
ing, in HF patients (Table IV) [118]. The antago-
mir against miR-132-3p entered a  phase II clini-

cal study in June 2022 (https://clinicaltrials.gov/
ct2/show/NCT05350969) [110]. The antagomir 
against miR-132-3p is among a  few microRNAs 
showing promise for their clinical utility. The other 
promising microRNA in cardiac ischemia and post-
MI remodeling, potentially therapeutic, is antago-
miR-92a, which was found to reduce infarct size 
in mouse and pig models, and enhanced blood 
vessel growth and functional recovery of damaged 
tissues [116, 119, 120]. In a model of reperfused 
MI, a single dose of anti-miR-92a prevented cardi-
ac remodeling without adverse effects in a porcine 
model [120].

In line with this observation, preclinical data 
encourage the use of miR-590-3p and miRNA-
199a-3p, which regulate calcium signaling through  
HOMER1 [121]. They possess pro-proliferative ef-
fects in cardiomyocytes through DNA synthesis 
and increased cytokinesis. They are also involved 
in reducing fibrotic scar size and can improve car-
diac function following MI in neonatal mice [121]. 
In addition, the miR-302-367 cluster can induce 
and maintain pluripotency, leading to an increase 
in cardiomyocyte mass, decreased myocardial fi-
brosis, and improved function in a failing myocar-
dium [122]. In the preclinical stage, there are stud-
ies on the use of miR-29 mimics for the treatment 
of cardiac fibrosis, and studies on inhibitors of 
miR-15 [111]. Also, anti-miR-212 and anti-miR-652 
demonstrated a good anti-fibrotic effect [116]. 

However, not all candidate microRNAs for ther-
apy were so successful (Table IV) [123–146]. On 
contrary, there are more microRNAs that failed 
than those that succeeded. Clinical studies with 
anti-miR-103/107-3p (AZD4076), miR-34a mim-
ics, and anti-miR-155-5p (cobomarsen) were 
terminated or halted by the sponsor for strate-
gic reasons (severe immune-related side-effects) 
[110, 111, 123–125], although in preclinical stud-
ies they could be considered for therapy in cardio-
vascular disease [124, 125].

Confusing data regard studies with miR-21 
antagonists and miR-21 mimics [126]. miR-21 
function depends on its source, as it derives from 
diverse cell types, including ECs, platelets, VSMCs, 
cardiomyocytes, and fibroblasts. miR-21 partic-
ipates in infarction injuries, cardiac remodeling, 
atherosclerosis, arrhythmias, and cardiomyopa-
thy [126]. However, increased miR-21 expression 
caused by MI protected cardiomyocytes from 
apoptosis (positive action), along with enhanc-
ing the activation of cardiac fibroblasts (nega-
tive action) [126]. Furthermore, miR-21-targeted  
PPARa resulted in increased inflammation owing 
to the ECs in the heart. Eventually, miR-21 therapy 
showed many off-target effects in the liver, lung, 
and kidney with a concomitant increase in serum 
creatinine levels [126]. 
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Regenerative cardiology – reprogramming 
heart cells. Prevention of cardiomyocytes 
loss

During cardiac injury (e.g., resulting from MI), 
large numbers of cardiomyocytes are lost due to 
apoptosis, autophagy, or necrosis [14, 147–152]. 
The accompanying recruitment of monocytes re-
sults in the removal of any damaged/necrotic car-
diomyocytes. This process results in cardiac muscle 
reduction, leading to HF, which is associated with 
malignant arrhythmia and increased mortality risk. 

One approach is to inhibit the extensive apopto-
sis of cardiomyocytes, which can be accomplished 
via decreasing the expression of pro-apoptotic 
microRNAs (Table V). Among these, anti-miR-195 
was shown to regulate anti-apoptotic genes; how-
ever, it is unclear whether miR-195 antagonists 
can reverse cell senescence or the apoptotic rate 

[153]. miR-199a was shown to directly target Clic5, 
which is involved in the proliferation of adult car-
diomyocytes [143, 150, 151]. Although miR-199a 
has been reported to improve cardiac function, its 
prolonged administration led to lethal cardiac ar-
rest [150, 151]. Finally, miR-125b overexpression 
efficiently attenuated cardiac function injury of 
HF mice by targeting BAK1 through inhibiting car-
diomyocyte apoptosis, suggesting that the miR-
125b/BAK1 axis might be a  potential target for 
the diagnosis or treatment of HF [152].

Another approach is the reprogramming of fi-
broblasts into induced cardiac progenitor cells 
(iCPCs) to obtain de novo cardiac lineages [108, 
154–160]. Cardiomyocyte-derived microRNAs 
such as miR-1 (through the target gene Bcl2), miR-
133a (many target genes), miR-208a (APC), miR-
223 (PARP-1), miR-499, and miR-145 (FRS2) may 
play important roles in these processes [115, 150]. 

Table V. MicroRNA-based therapies in preclinical studies used for cardiomyocytes protection and proliferation 

microRNA Studied therapeutic 
agent

Subject to study Activity/significance/side-effects Refer-
ence

miR-195 Anti-miR-195 regulates 
anti-apoptotic genes, 

can decrease apoptosis 
after ACS

In vitro cultured 
myoblast

miR-195 inhibition did not affect cell 
ageing or rejuvenation of human 

skeletal muscle-derived stem/
progenitor cells (SkMDS/PCs). It is 

unclear whether miR-195 antagonists 
can reverse cell senescence or the 

apoptotic rate

[153]

miR-199a miR-199a was shown 
to directly target Clic5, 
which is involved in the 

proliferation of adult 
cardiomyocytes.

Mice Although miR-199a has been reported 
to improve cardiac function, its 

prolonged administration led to lethal 
cardiac arrest

[143, 
150]

miR-125b miR-125b agonists Mice miR-125b overexpression efficiently 
attenuated cardiac function injury of 
heart failure mice by targeting BAK1 

through inhibiting cardiomyocyte 
apoptosis, suggesting that the miR-

125b/BAK1 axis might be a potential 
target for the diagnosis or treatment 

of HF

[152]

A cocktail of  
4 microRNAs 
mimics  
(miR combo)  
miR-1, miR-133, 
miR-208, and 
miR-499 

May be efficient 
in the induction of 
transformation of 

fibroblasts into induced 
cardiomyocytes (iCMs)

Adult human 
cardiac 

fibroblasts

The percentage of cTn-positive cells 
(former fibroblasts) 15 days after miR 

combo transfection was ∼11%, as 
evaluated by flow cytometry.

A potential new strategy for myocardial 
regeneration after ACS

[114]

A cocktail of  
4 microRNAs 
mimics  
(miR combo)  
miR-1, miR-133, 
miR-208, and 
miR-499

miR combo effectively 
reprograms fibroblasts 

of any mammalian 
species into 

cardiomyocytes

Cardiac 
fibroblasts 
of pig, dog 
and fetal 

human cardiac 
fibroblasts

miR combo reprograms pig, dog, and 
fetal human cardiac fibroblasts into 

cardiomyocyte-like cells that induce the 
expression of sarcomere and cardiac 

ion channels. In a fetal human cardiac 
fibroblast model ∼10% of cells had 

cardiomyocyte-like properties  
14 days after transfection. This study 

validates the miR combo as a potential 
therapeutic modality for myocardial 

regeneration following ACS

[158]
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A cocktail of 4 microRNAs called the miR com-
bo (including mimics of miR-1, miR-133, miR-208, 
and miR-499) is proposed to be efficient in the 
induction of fibroblast transformation into in-
duced cardiomyocytes (iCMs) (Table V) [154]. The 
researchers have also developed a delivery system 
to introduce the miR combo directly into the heart 
[155]. Yang et al. delivered a cocktail of 4 cardio-
myocyte-derived microRNA mimics using nano-
complexes of branched polyethyleneimine-coated 
nitrogen-enriched carbon dots, which were then 
injected into the heart [156]. These nanocomplex-
es led to the efficient direct reprogramming of fi-
broblasts into iCMs without genomic integration 
and resulted in effective recovery of cardiac func-
tion following MI [156, 157]. MicroRNAs have been 
used to enhance direct reprogramming alone or 
in combination with transcription factors. Stud-
ies by Jayawardena et al. and Jiang et al. reported 
that a  transient non-viral transfection system of 
miR-combo including miR-1, miR-133, miR-208, 
and miR-499a was able to reprogram mouse 
cardiac fibroblasts into iCMs in vitro and in vivo 
[157]. Recently, Baksh et al. demonstrated that 
miR combo reprograms pig, dog, and fetal human 
cardiac fibroblasts into cardiomyocyte-like cells 
that induce the expression of sarcomere and car-
diac ion channels [158]. In a fetal human cardiac 
fibroblast model, approximately 10% of cells had 
cardiomyocyte-like properties 14 days after trans-
fection. This study is important as it validates the 
miR combo as a potential therapeutic modality for 
myocardial regeneration following ACS [158].

Combining microRNA-based therapies with 
other emerging therapies, such as cardiac 
stem cell or gene therapies.

Treating cardiovascular diseases with cardi-
ac stem cells is a  valid treatment. Cardiac stem 
cells can reproduce the myocardial cells [66, 161, 
162]. Studies have shown that cardiac stem cell 
proliferation and differentiation are regulated by 
microRNAs [161, 162]. How microRNAs regulate 
cardiac stem cell behavior is an interesting area 
of research that can help us study and control the 
function of these cells in vitro – an achievement 
that may be beneficial for patients with cardiovas-
cular diseases [161, 162].

Limitations of microRNA use.

It is important to understand the limitations of 
microRNAs. Many microRNAs can be used as di-
agnostic and prognostic markers without causing 
harm. However, even though microRNA mimics 
and antagonists are already being investigated 
in animal models, or even in human, their main 
limitations concern their therapeutic safety, sta-

bility in circulation, toxicity, unwanted off-target 
actions, and lack of therapeutic actions in hu-
mans that were previously described in cultures 
or animal models [110, 111]. Important issues to 
understand are their potential toxicity, off-target 
actions, and irreversible inhibition of mRNA. Some 
may act as oncogenes or exert dual/multiple roles, 
including opposite actions. Because of this, deliv-
ery systems were developed to administer micro- 
RNAs locally (e.g., directly into the coronary cir-
culation or cardiac muscle) [110, 111]. To prevent 
their quick degradation in the blood stream, syn-
thetic oligonucleotides that are more resistant to 
enzymatic lysis were produced.

Future directions and conclusions

Two approaches for the management of ath-
erosclerosis can be considered for testing in the 
clinical setting. The first one, presented in this re-
view, is associated with a reduction in atheroscle-
rosis-related post-ischemic complications [108–
110]. This approach attempts to inhibit fibroblast 
proliferation and scarring, harmful apoptosis, 
autophagy or necrosis of cardiomyocytes, and in-
volves the reprogramming of fibroblasts into iCMs, 
which may offer better post-ACS recovery and 
a decreased rate of post-MI adverse events. 

The second approach involves early interven-
tion at the level of atherosclerotic growth ini-
tiation [4, 5, 74]. The optimal point for early in-
tervention would be during the identification of 
intima-media complex thickening or the presence 
of early plaques [127–129]. Increasing thickness 
of the carotid intima-media complex and carot-
id plaques is related to the extent and severity 
of atherosclerosis, in addition to polyvascular 
atherosclerosis [163–171]. Also, the role of mi-
croRNAs in cardiovascular risk factor modifica-
tion seems extremely important. microRNAs are 
highly expressed in patients with obesity, meta-
bolic syndrome and familial hyperlipidemia [172, 
173]. Particularly miR-150 showed associations 
with proprotein convertase subtilisin/kexin type 9 
(PCSK9) [171]. PCSK9 regulates extracellular ves-
icle-derived microRNAs, especially those involved 
in inflammation and expression of the low-den-
sity lipoprotein receptor (LDLR) receptor. Studies 
on mice demonstrated a downregulation effect of 
immunotherapy with the PCSK9 peptide vaccine 
on the hepatic expression levels of miR-27a [174]. 
miR-27a has been shown to improve LDLR deg-
radation by directly binding to its 3′-untranslated 
region (UTR) and indirectly by enhancing PCSK9 
[174]. Therefore, respective microRNAs might be 
significantly regulated by statin therapy [175–
177]. As mentioned before, also treatment with 
angiotensin-converting enzyme inhibitors, angio-
tensin receptor blockers, GLP-1, PCSK9 inhibitors, 
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and antiplatelets modulates expression levels of 
corresponding microRNAs [175–177].

Cellular and molecular biology is a rapidly grow-
ing field of research [178, 179]. Soon, it may pro-
vide novel solutions for personalized treatment, 
integrating knowledge from basic cardiological 
science to preclinical studies, and eventually to 
clinical practice. The clinical approaches are wor-
thy of continued research and development. In 
both treatment strategies, microRNAs may play 
a critical role in the regeneration of the heart, as 
well as in the initiation and progression of athero-
sclerosis. While initial preclinical data are prom-
ising, there is still much work to be done in this 
field.
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